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PROBLEM OF LANDING.

By

__E. Pistolesi. .

' The problem of landing deéerves more serious attention then
1t has thus far been given. In the following brief remarks, I
W111 expound certa¢n con31deraulons which seem t0 me to throw
some light on the subaect.;
First of all, it must be carefully determined asto how the
airplane is to land. After descending to a certain height above
the ground by gliding, the alrplane "flattens'out" and flies hori-

zontally near the ground, without erngine (or at "idling" speed)

so as to be retarded rather than accelerated), during which time

the airplane lecses speed by increasing its incidence, until, being
no longer able %0 support itself, it descends and rests its wheels
on the ground. Thus tﬁé tail skid sometimes touches the ground
before the landing gear.

The landing is therefore a fall from a low height, which
takes place when the airplane, because of its reduced speed, is no
longer supported. Naturally, it is not a,free fall, since the
1ift, although no longer equal to the wgight of the airplane, does
not become zero all at once. ' . |

From the foregoing, it follows thax the wheels 40O not touch

~--the ground, in a skillful landing, until the ailxplane has reached

its minimum speed, corresponding t0 a certain value of the thrust

* Taken from "L'Aeronautica,™ Jan.-Feb., 1931, pp. 83-37.
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(K&*) which, as shown by experience, doss not coincide with the geo-
metric maximum of the polar, but'lies,'instead, between this and
the value corresponding to the minimum traction. Since the practi-
cal and geometrical maxima of Ky*' do not coincide, it is proba-

bly due to0 considerations of stability. It suffices for us %o have

. called attention to the fact.

1. Horizontal Flight Gver Field.

The retarding force is given by

< e v o o e

-7 _gy= % ok ‘ i -
and therefore the acceleration by
K, SV2
Qg
Granted that ’ -
Q= KYSV"’

N . TIONR

we have:
dV=___g
4|

at

(1)

Indicating with n the ratio
n =

B P e e R
L . B .

xﬂ ‘zﬁ

(15 may be transformed as follows: . ' 5‘;
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** For simplicity of nobation, the asterisks, which indicate that Lo
the K., K., etc., refer to the whole airplane, are omitted. For the F
notations; see "I1 Belletino Tecnico," No.l7, of the "Dirzione
Sperimentale dtAviazione."
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Hence
L %0 aw) (3)
3g ¥ ' .
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in which the integral is included between the speed 7V, ab
which flight begins and the ultimate minimum speed V,.

Equation (3) may, with easy transformations be written _

s =’é§§ J“é; Egi' } - (4)

being the integral limited by thé initial and final values of Ky.

For integrating either (4) or (5),.when'it is not desired to
make use of a graphic process, very easlly applied to (4), it is
necessary tq’know the equai;on of the polar in the space between
the initial and final points P, and P, (Fig. 1).

As already mentioned, this interval is not very large, jush

because the flight over the field begins with an angle of incidence

varying but little (often somewhat less) from that of minimum trac-

tion. It is therefore possible to sﬁbsti%gte for the actual space

P, P, a curve with a simple equation (parabola of n order) of the

following type.

©

- n '

-

in which Ko would be the value of the abscissa relative to the

point where the prolongation of the curve substituted for the space

‘P, P, encounters the axis of EKx. o

By substituting in (4) and integrating, we obtain

g = —8 log __;.SJ.___Y.E? - (8)
3gSKn Kxa 1‘ :
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Qr:
8=~ g 2l | (7
2gSK 0~ ° 7,0 e )
Henoe, for n =1
| | = Q n-': ) - |
g8 = e R
2gSK, 1og M, (8)
For' n = p=t o
‘ - Q M, V,° | N
S F ot
4gSK, 198 M y,7 (9)
For n = 3 .
g8 = ...__QL*_.. log p.a-YJ-&.. (10)
BgSKq nlvz

All the above formulas lead, in practice, to very similar re-

sults, as is shown by the following example.

Let:
Kx, = 0.00385 Ky, = 0.020 {point P,)
Ky, = 0.005 Ky = 0.047 (point P,)

The above values are obtained from the polar of Pig. 1. After

]

making the calculations by means of (8), we find:

Form =1 s = 13.2 &

5
"= 3 s = 13.8 %
" omo=3 8 = 14.1 %

The differences between the various cases do not reach 7%.

Taking therefore as the average

= Q
8 143
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for

0o

= 40, we obtain s = 560 ni; for glr—" 50, we obtain
8 = 700 mo . : ' 7

For practical 'pu:«:poses, the above formilas are a little com-

plicated and, since it suffices to know the space s approximately, -

it is better to use simpler formulas, which may be 'obtained by ap-
plying the theorem of the mean value. ’
Thus we may Obtain from (4)
Q 1 ¥
- T 16 %,
n KY;.

‘(11)

in vbh ich, Tor the mean value 1/ (Kx)m, we may pgt simply the arith-
metical mean: '

1(L L)
A

By applying the above to the example, we find:

= Q
g ;3.75 §

which demonstrates the admissibility of this procedure.
a , L _
But the simpler and more expressive formula is obtained by ap-

plying the theorem of the wean value t6 (3)

g = {Mn (v 2 } vf) . (13)

Since it has already been mentioned that the space P, B
hag about the value of the angle of minimum traction, for which
is minimum, we 'ma,y (always in the way of a broad approximation) put

Npin, instead of (M), and we shall have:
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g = _min. (V2~Va) ‘ (13:

Or, even assuming

é = Lo, g2 (g ) ‘ | (14)

By applying this to the usuval example, we have:

- a
s = 15.63

or a somewhat excessive-value, as was %0 be expected; but étill ap~
proximate to within 10%. The approximation would ﬁaxurally be
closer, if the field P, B were more restricted, and in particu-
lar if B were nea@er the point of minimum traction.
If we xply it to the practical example:
V, (landing speed) = 33 w/sec.

min., = 10
V, = 1.5 ¥, = 48 m/sec.

we shall have:
s = 640 m.
It is interesting to o’pserve that eqaation (13) expresses the

work wh ich would have been done by gravity, if the machine had de-
1

scended with a constant inclinatiom of

min.
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2. Dimensioans of Landing Field.

The foregoing enables us to form an opinion on the dimensions:

£ the landing field. I is evident that these dimensions are gen-—
erally very great and depend essentially on two factors: the fine-
ness of the airplane and the ratio between the speed with which it
begins its flight ovei the field and the minimum speed of Wh;éh it

is’capable. ,

For swift{ and very fine-airplanes the landing problem becomes )&~

all-important and must be seriously considered. In fact, to avoid
the necessity of immense fields, it will be necessary to descend on

the field abt a low speed, since the equation B = exeris a

e
v?.. .
great imfluence; as can be judged from Fig. 3, in which B% -1 is
hshown with relation to 8.

But, in order to bring V, nearsr to %, it is necessary to
descend with a small gliding angle and hence t0 have a field free
from all obstacles. In other words, while it would be convenient
(in order to facilitate alighting, especially in case of a forced
landing) to be able to descend on the field at a steep imclinationm,
there is opposed to this the necessity of not striking the ground
at too great speed.k. .

If, in the last example of the preceding paragraph, we should
simply make B = 1.8, instegd of 1.5, the length of flight would
pass, from 640 to 1350 m. )

In order to reduce the length of flight over the field, without

imposing on the gliding angle limitations which would prove inoppor-
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tune in practice, it wcull e necessazy to diminiéh ,artificially
the finenese of the machine, by creating a counter-pull or brake,
elther by means.cf resisting surfaces opposed to the wind, or by
means of the propeller itself, by reversing the pitch or the rota-
tion. -

By thus increasing the structural resistance, 1 is diminished
and consequently s. Thus, in the case of the polar in Fig. 1, it -
there is added a structural resistance of k = 0;002, N passes .
from the value of 10.8 %o 6.8 and, with equality of initial and fin-
al speeds, the distance s 1is reduced %o %—g—’ . 3

In order to produce a like resistance with a surface normal $0
the wind, it would be necessary to have a surface of

1
15 S

or, for example, for an airplane of 40 sqg.m. wing surface to have a

, resisting surface of 1 sq.m. If the resisting surface could be

tripled, 7 would be reduced 0 4.35 and s 10 about 0.4.
But the introduction of such a resistance would be much super—

ior, if it were applied during the descent, either because it would

-enskle the descent with a steep inclination at a low speed, or be-

cause, by increasing the angle of minimum pull, it would bring V,
nearer to V, and therefore diminish B by bringing it nearer to
unity.

In this connection, experiments have been tried in America with \
a parachute for a brake, but thus far there have been only prelimi- :

nary experiments designed to show whether the parachube was strong

.
Ll

enough. The parachute was broken at 80 miles per hour.
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Instead of a resisbing surfsse, we may use, a3 élrsady me';z?.i:.n.. ,
ed, the propeller with z.ither the »itch or the z:otation direction
reversed. Expérimeni;s' were begun ai Naples with reversed propeller
by Col._Bongio.vanni, which could not be continuved on account of an - }
accident.-

As for the case of the propeller wi‘a;n inverted pitch, it is not »

easy to say, in the present status of the experiﬁents, what force it

would give, since theé propeller {aside from the exchané;e of the
front and rear) would work in = diz_:eo‘c current in -the oppo_si'be di- - ?
. ) {
rection to ifs thrust, and this working condition is very little un-- I

derstood. In order to obtain an approximate value, we may, howeverx, ° { b

assume that the propeller gives, under this condition, a counter- Sr'

11

thrust nearly egual to that of an ordinary stationary propeller and jg; '

{

{

that this is about 1.5 $imes that in flight with a speed of V. E

[

|

H

;

¥

Thus it is Tound that the effect of the proveller would be about

L3

that of introducing a nearly constant coun’_cér"bhmst equal to

t

1.5 X 728 = 1.5 —%
b

In order o obtain an idea of the influence of such constant

resisi;vance, it will suffice to rewrite equation (1) thus modified:

e 4w o rnany W s,

av _ g .8 9

byt -+ 1-5

dt m QT T Ty,

& _ .1 1.5 _,
0t Sqt T, (15) lr‘

By applying, as before, the theorem of the mean value and mak~

ing m = 7, = N,;,, we shall have:

S —— et




-~ 10 =

R %%=—,3-5-ﬁﬁ;
which leads %0 the conclusion that the space s, - with equaiity of
initial and final speeds,\ié reduced. accoxding to %he ratio of |
1 to 2.5,

Lastly, we ob'se:rve that, even without any special device, there
is always a braking resistance'due to the propeller, its pitch and
direction of rotation remain constant.

It is known that when the rovation speed is small with refer~
ence to the forward motion (or ﬁxﬁ-is large), the propeller may
develop a considerable braking force.‘ |

Experiments performed at the Aeronautic Experimental Institute
on én S.V.A. propeller demonstrated that, for a suitable value of
ﬁy—D"’ the ratio p-r—.?%fl can attain a value (négative) nearly equal %0
the value of the same sﬁeed ratio in horizontal flight.

If the propeller is stationary, the value of this ratio be-

comes, for the propeller under conslderation, about 3/3 of the

above value.-

This denotes the introduction of a specific structural reQ
sistance, equal in the two cases t0 Ky pin. and 3/3 Ky piq.
It is therefore a question of an influence far from negligible.
Thus in the case of‘Fig. 1, assumed for a stabtionary propel-
ler, there is an inorease in K; of zbout 0.0015, causing a dimi-

nution of W from 10.8 to 7.4 5. .
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Having assumed moreover the beginning of horizontal flight at
the incidence of minimum traction, we find that K& passes from
0.033 to 0.038. Taking Ky = C.047, B® will be equal in the two
cases t0 2.035 and 1.53. From this it follows that s varies in

the equation

&

'.5;3._._ =
o285 - O-3

|

0.68 x

]

The length of the landing flight is reduced %0 1/3 and the L///

gliding angle in the ratio of about 1 : 1.5.

3. The Fall and the Sirensth of the Landing Gear.

The second phase of landing is the "fall" which begins when
the_machine has arrived at the minimum pracﬁical speed beloﬁ which
i1ts inertia will no longer support it.

The machine then éssumes very steep angles of incidence for
which Ky remains nearly constant, while K, continues to in-
crease with the increasing incidence.

The differential equations of the motion in this case are the

following, in which v indicates the vertical rabte of descent:

av : vR X
at v2 Y,
dv. .. S R (17)
a-g =-8g ”\'T_—é-
2 |

Ky=

A simplification may be made in the above equations by suvppos-—
ing Xy, = Ky, a supposition justified by the ordinary behavior

of the polar which, after having reached its meximum, bends toward

v om
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the arvis of the abzciseas and then asswmes a, dizection almogt jizs-
allel to said axig. |

But even thus simplified, the two equations in question do nob
lead to practical results, it being imposeidble bto detexrmine how
the incidence varies with the time and hence how K, varies.
Thexefore it is necessaxy to resort to an artifice.

That is, We sssume thab the vertical acceleration during the
fall increases lineally (This may be done on account of the brevity
of the falling phase under consideration), by passing from the zero
value at the beginning to the value o g av the end. It would be
@ =1, if, at the end of the fall, the vertical 1lifv should com-

pletely disappear, or else V = 0. If t4 1s the falling time,

we have
ov 1
i o g 3 (18)
= L Ei IS
v 5 g & (39)

and assuming v = g%, we obtain
V=g egis (20)

The time 1, and the speed v,, wWith which the ajrplane
touches the ground, are therefore readily expressed in terms of the

distance fallen, vy, :

— - s b G

_ T8 S
To “J.EX-O— (31)
Vo=, 508V (22)

»
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& remains L0 Le deteirined. Too this we shzll use forruls

(17), in which we shall puh, as slresdy mentiomed, Ky =X, and
o
v 1 ‘
“hence ;-{K- =~ . Bv applying the theo-wem of the mean value, we
-V 9_’]
- shall fina:
v.n v, -
to - -2 T 1 (23)
& o

in which 7,. .indicates amean value cf the ratio =.

NOW, in the ayponthesis X, = KY’ %-2- —————
and therefore, by comparing (31) and (23):
e ST e,
1-~c v, 1

The first member is a function increasing with & and there-

fore the maximum value of @ will occur for the maximum valué of

the second member. In this case, it is allowable to substitute for

the mean value %y a minimum, which may be held equqgl to 2 (the

mean value corresponding to an incidence of 20°).

The same reasoning leads us to assume for y (distance fallen)

a high value (certainly not exceeded in practice, at least in nor-

mal landings) of, for example, 1 .

Henge: _
2
@ 3 -1 -a) 5 :
= (25)
1~ ca V,
Asguming V, = 18 m/sec. we obfain o« = ~ 0.43
V, = 36 m/sec. we Obtain o = ~ 0.3

e S
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In practice we may therefore take & between 3/7 and 3/10, ac—
cording t0 the minimum speed of the airplane.

By substituting in (33) and putting it under the form

e e g T e e i o e

we have, in the two cases, € = 0.33, ¢ = 0.235, which means that
the freely falling distance, to be considered. for the strength of

the landing gear lies, according to the minimum speed of the air-

‘plane, between 1/3 and 2/9 of the actual height at which the final

phase of the descent begins.
Thus, having taken yq = 1m., we have ¢ y = 0.335 to 0.33 n.
The figure of 0.5 m. which it is customary to consider as the
freely falling height, in determining the strength of the landing

gear, is therefore fully justified oy the foregoing considerations.

(Translated by the National Advisory Committee for Aeronautics.’
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